Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
1.
Planta ; 259(6): 153, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744752

RESUMO

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Assuntos
Ascomicetos , Nicotiana , Doenças das Plantas , Interferência de RNA , Ascomicetos/fisiologia , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/genética , Nicotiana/microbiologia , Mostardeira/genética , Mostardeira/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA de Cadeia Dupla/genética
2.
Proc Natl Acad Sci U S A ; 121(12): e2319235121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466838

RESUMO

A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement of TAD2 and TAD3 orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role of FgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing in Fusarium graminearum. FgTAD2 had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactive FgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations in FgTAD2 that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenous FgTAD2 allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.


Assuntos
Ascomicetos , Edição de RNA , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ascomicetos/genética , Adenosina Desaminase/metabolismo , RNA de Transferência/metabolismo , Isoformas de Proteínas/genética , Adenosina/metabolismo
3.
Food Res Int ; 180: 114056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395571

RESUMO

Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.


Assuntos
Ascomicetos , Reishi , Triterpenos , Reishi/genética , Reishi/química , Cromatografia Líquida , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Espectroscopia de Ressonância Magnética , Ascomicetos/genética
4.
Mol Plant Pathol ; 25(1): e13404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037862

RESUMO

Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY: Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE: B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY: This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY: Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES: Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.


Assuntos
Ascomicetos , Botrytis , Plantas/microbiologia , Especificidade de Hospedeiro , Ascomicetos/genética , RNA/metabolismo , Doenças das Plantas/microbiologia
5.
Virus Res ; 339: 199256, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898320

RESUMO

Endornaviruses are known to occur widely in plants, fungi, and oomycetes, but our understanding of their diversity and distribution is limited. In this study, we report the discovery of four endornaviruses tentatively named Setosphaeria turcica endornavirus 1 (StEV1), Setosphaeria turcica endornavirus 2 (StEV2), Bipolaris maydis endornavirus 1 (BmEV1), and Bipolaris maydis endornavirus 2 (BmEV2). StEV1 and StEV2 infect Exserohilum turcicum, while BmEV1 and BmEV2 infect Bipolaris maydis. The four viruses encode a polyprotein with less than 40 % amino acid sequence identity to other known endornaviruses, indicating that they are novel, previously undescribed endornaviruses. However, StEV1 and BmEV1 share a sequence identity of 78 % at the full-genome level and 87 % at the polyprotein level, suggesting that they may belong to the same species. Our study also found that each of the four endornaviruses has an incidence of approximately 3.5 % to 5.5 % in E. turcicum or B. maydis. Interestingly, BmEV1 and BmEV2 were found to be unable to transmit between hosts of different vegetative incompatibility groups, which may explain their low incidence.


Assuntos
Ascomicetos , Vírus de RNA , Incidência , Filogenia , Ascomicetos/genética , Vírus de RNA/genética , Poliproteínas/genética
6.
Plant Physiol Biochem ; 205: 108158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948976

RESUMO

Tuber indicum is the most economically important member of Tuber, with the highest production and widest distribution in China. However, the overexploitation of immature ascocarps not only has driven wild resources of the species toward extinction, but also has caused enconomic losses and a decline in the reputation of T.indicum quality. In this study, stage-specific metabolites of T. indicum in relation to nutritional quality and the mechanism of their accumulations were explored by transcriptome and metabolome analysis at five harvest times, representing four maturation stages. A total of 663 compounds were identified in T. indicum ascocarps by a widely targeted metabolomic approach. Lipid compounds are the most prominent metabolites (18%) in our samples and also are higher accumulation at the immature stage than at mature stage, representing 30.16% differential accumulated metabolites in this stage. Levels of some of the amino acids, such as S-(methyl) glutathione, S-adenosylmethionine, which are known truffle aroma precursors, were increased at the mature stage. The gene expression level related to the biosynthesis of volatile organic compounds were verified by qPCR. This study contributes to the preliminary understanding of metabolites variations in T. indicum ascocarps during maturity for quality evaluation and truffle biology.


Assuntos
Ascomicetos , Metaboloma , Transcriptoma , Metaboloma/fisiologia , Transcriptoma/genética , Ascomicetos/genética , Ascomicetos/metabolismo
7.
Sci Rep ; 13(1): 16368, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773261

RESUMO

The genus Ceratocystis includes many phytopathogenic fungi that affect different plant species. One of these is Ceratocystis cacaofunesta, which is pathogenic to the cocoa tree and causes Ceratocystis wilt, a lethal disease for the crop. However, little is known about how this pathogen interacts with its host. The knowledge and identification of possible genes encoding effector proteins are essential to understanding this pathosystem. The present work aimed to predict genes that code effector proteins of C. cacaofunesta from a comparative analysis of the genomes of five Ceratocystis species available in databases. We performed a new genome annotation through an in-silico analysis. We analyzed the secretome and effectorome of C. cacaofunesta using the characteristics of the peptides, such as the presence of signal peptide for secretion, absence of transmembrane domain, and richness of cysteine residues. We identified 160 candidate effector proteins in the C. cacaofunesta proteome that could be classified as cytoplasmic (102) or apoplastic (58). Of the total number of candidate effector proteins, 146 were expressed, presenting an average of 206.56 transcripts per million. Our database was created using a robust bioinformatics strategy, followed by manual curation, generating information on pathogenicity-related genes involved in plant interactions, including CAZymes, hydrolases, lyases, and oxidoreductases. Comparing proteins already characterized as effectors in Sordariomycetes species revealed five groups of protein sequences homologous to C. cacaofunesta. These data provide a valuable resource for studying the infection mechanisms of these pathogens in their hosts.


Assuntos
Ascomicetos , Ceratocystis , Ascomicetos/genética , Biologia Computacional , Sequência de Aminoácidos , Doenças das Plantas/microbiologia
8.
Mol Biol Rep ; 50(10): 8421-8429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620739

RESUMO

BACKGROUND: Venturia inaequalis is an apple scab causing fungal pathogen. It is a highly contagious and destructive pathogen which rapidly spreads infection in the surrounding orchards if not managed. The management and control of disease require multiple fungicides to be sprayed at different development stages of the apple. Persistent applications of fungicides also raises environmental concerns. Here, we demonstrate the potential of using spray induced gene silencing (SIGS) by developing target specific gene constructs for the synthesis of corresponding double-stranded RNA (dsRNA). METHODS AND RESULTS: The exogenous application of dsRNAs was found to reduce mycelial growth and spore formation of V. inaequalis on culture plates. Four genes of V. inaequalis viz. CIN1, CE5, VICE12 and VICE16 which get upregulated during infection, were selected as targets for the development of gene construct expressing the corresponding dsRNA. The effect of exogenously supplied in vitro synthesized dsRNA on V. inaequalis was assessed in culture bioassay experiments with respect to growth, and spore formation. The expression level of the target genes in treated and control fungus was evaluated using quantitative PCR. Fungus treated with VICE12 targeted dsRNA showed maximum reduction in colony size (~ 55%), conidia formation (~ 93%) and expression level of the corresponding gene (2.2 fold), which was followed by CIN1-dsRNA. VICE16-dsRNA treatment was least effective with 32% reduction in growth, the non-significant effect of conidial spore formation and 1.13 fold down regulation of corresponding target gene expression level. CONCLUSION: The result of this investigation validates the hypothesis that RNAi is evoked in V. inaequalis by exogenously supplied dsRNA and spray induced gene silencing (SIGS) based solutions may reduce burden of fungicide usage on apple crop against apple scab disease in future.


Assuntos
Ascomicetos , Fungicidas Industriais , Malus , Fungicidas Industriais/farmacologia , Ascomicetos/genética , Interferência de RNA , Regulação para Baixo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
9.
Mol Plant Microbe Interact ; 36(12): 779-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37551980

RESUMO

Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.


Assuntos
Ascomicetos , Populus , Populus/genética , Populus/microbiologia , Virulência , Ascomicetos/genética , Imunidade Vegetal , Doenças das Plantas/microbiologia
10.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445741

RESUMO

Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.


Assuntos
Ascomicetos , Glycine max , Glycine max/metabolismo , Perfilação da Expressão Gênica , Ascomicetos/genética , Transcriptoma , Doenças das Plantas/genética
11.
Curr Microbiol ; 80(7): 235, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278966

RESUMO

Trichoderma is a genus of common filamentous fungi that display a various range of lifestyles and interactions with other fungi. The interaction of Trichoderma with Morchella sextelata was explored in this study. Trichoderma sp. T-002 was isolated from a wild fruiting body of Morchella sextelata M-001 and identified as a closely related species of Trichoderma songyi based on morphological chracteristics and phylogenetic analysis of translation elongation factor1-alpha and inter transcribed spacer of rDNA. Further, we focussed on the influence of dry mycelia of T-002 on the growth and synthesis of extracellular enzymes of M-001. Among different treatments, M-001 showed the highest growth of mycelia with an optimal supplement of 0.33 g/100 mL of T-002. Activities of extracellular enzymes of M-001 were enhanced significantly by the optimal supplement treatment. Overall, T-002, a unique Trichoderma species, had a positive effect on mycelial growth and synthesis of extracellular enzymes of M-001.


Assuntos
Ascomicetos , Trichoderma , Trichoderma/genética , Filogenia , Ascomicetos/genética , DNA Ribossômico
12.
Mol Plant Pathol ; 24(8): 825-837, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129449

RESUMO

Gummy stem blight (GSB) is a major disease of cucurbits worldwide. It is caused by three fungal species that are morphologically identical and have overlapping geographic and host ranges. Controlling GSB is challenging due to the lack of resistant cultivars and the pathogens' significant ability to develop resistance to systemic fungicides. The causal agent of GSB is recognized as a complex of three phylogenetically distinct species belonging to domain Eukaryota, kingdom Fungi, phylum Ascomycota, subphylum Pezizomycotina, class Dothideomycetes, subclass Pleosporomycetida, order Pleosporales, family Didymellaceae, genus Stagonosporopsis, species cucurbitacearum, citrulli, and caricae. Pycnidia are tan with dark rings of cells around the ostiole measuring 120-180 µm in diameter. Conidia are 6-13 µm long, hyaline, cylindrical with round ends, and non- or monoseptate. Pseudothecia are black and globose in shape and have a diameter of 125-213 µm. Ascospores are 14-18 × 4-6 µm long, hyaline, ellipsoidal with round ends, and monoseptate with a distinct constriction at the septum. Eight ascospores are found per ascus. The upper end of the apical cell is pointed, whereas the lower end of the bottom cell is blunt. Species-specific PCR primers that can be used in a multiplex conventional PCR assay are available. The GSB species complex is pathogenic to 37 species of cucurbits from 21 different genera. S. cucurbitacearum and S. citrulli are specific to cucurbits, while S. caricae is also pathogenic to papaya and babaco-mirim (Vasconcellea monoica), a related fruit. Under favourable environmental conditions, symptoms can appear 3-12 days after spore germination. Leaf spots often start at the leaf margin or extend to the margins. Spots expand and coalesce, resulting in leaf blighting. Active lesions are typically water-soaked. Cankers are observed on crowns, main stems, and vines. Red to amber gummy exudates are often seen on the stems after cankers develop on cortical tissue.


Assuntos
Ascomicetos , Fungicidas Industriais , Doenças das Plantas/microbiologia , Ascomicetos/genética , Especificidade de Hospedeiro , Especificidade da Espécie
13.
Arch Virol ; 168(5): 144, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071213

RESUMO

A new double-stranded (ds) RNA mycovirus has been identified in isolate Ds752-1 of the phytopathogenic fungus Dothistroma septosporum, the causal agent of Dothistroma needle blight, also known as red band needle blight or pine needle blight. Dothistroma septosporum chrysovirus 1 (DsCV-1) is a new member of the genus Alphachrysovirus in the family Chrysoviridae. The DsCV-1 genome comprises four dsRNA elements designated 1, 2, 3, and 4 from largest to smallest. dsRNA1 encodes an RNA-dependent RNA polymerase (RdRP) that is most similar to the RdRP of Erysiphe necator associated chrysovirus 3. dsRNA2 potentially encodes two hypothetical proteins, one of which is small and has no homology to known proteins, and one of which is large with significant sequence similarity to the alphachryso-P3 of other alphachrysoviruses. dsRNA3 and dsRNA4 encode a coat protein (CP) and a putative cysteine protease, respectively. This is the first report of a mycovirus infecting the fungus D. septosporum, and DsCV-1 is one of three Chrysoviridae family members found to possess genomic dsRNAs potentially encoding more than one protein.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Proteínas Virais/genética , Genoma Viral , Ascomicetos/genética , Análise de Sequência de DNA , RNA Polimerase Dependente de RNA/genética , RNA de Cadeia Dupla/genética , Filogenia , RNA Viral/genética , Micovírus/genética , Fases de Leitura Aberta
14.
Curr Microbiol ; 80(4): 129, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884095

RESUMO

During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial ß-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.


Assuntos
Ascomicetos , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , Ascomicetos/genética , China
15.
Appl Environ Microbiol ; 89(3): e0210722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36912653

RESUMO

Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as Bispora sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The ArAceA deletion mutant (ΔArAceA) exhibits specific growth defects at Cu concentrations of ≥10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the ΔArYgA mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in A. richmondensis MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists. IMPORTANCE Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including A. richmondensis. The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to A. richmondensis MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in A. richmondensis MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus A. richmondensis MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.


Assuntos
Ascomicetos , ATPases do Tipo-P , Cobre/farmacologia , Cobre/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Ascomicetos/genética , Ascomicetos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , ATPases do Tipo-P/genética
16.
Proc Natl Acad Sci U S A ; 120(12): e2219029120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917661

RESUMO

Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animals, and it occurs in fungi specifically during sexual reproduction. However, it is debatable whether A-to-I RNA editing is adaptive. Deciphering the functional importance of individual editing sites is essential for the mechanistic understanding of the adaptive advantages of RNA editing. Here, by performing gene deletion for 17 genes with conserved missense editing (CME) sites and engineering underedited (ue) and overedited (oe) mutants for 10 CME sites using site-specific mutagenesis at the native locus in Fusarium graminearum, we demonstrated that two CME sites in CME5 and CME11 genes are functionally important for sexual reproduction. Although the overedited mutant was normal in sexual reproduction, the underedited mutant of CME5 had severe defects in ascus and ascospore formation like the deletion mutant, suggesting that the CME site of CME5 is co-opted for sexual development. The preediting residue of Cme5 is evolutionarily conserved across diverse classes of Ascomycota, while the postediting one is rarely hardwired into the genome, implying that editing at this site leads to higher fitness than a genomic A-to-G mutation. More importantly, mutants expressing only the underedited or the overedited allele of CME11 are defective in ascosporogenesis, while those expressing both alleles displayed normal phenotypes, indicating that concurrently expressing edited and unedited versions of Cme11 is more advantageous than either. Our study provides convincing experimental evidence for the long-suspected adaptive advantages of RNA editing in fungi and likely in animals.


Assuntos
Ascomicetos , RNA , Animais , Edição de RNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Ascomicetos/genética
17.
Microbiol Spectr ; 11(1): e0448822, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36645309

RESUMO

Ascochyta blight caused by Ascochyta pisi is a major constraint to pea (Pisum sativum L.) production worldwide. Deciphering the pathogenic mechanism of A. pisi on peas will help in breeding resistant pea varieties and developing effective approaches for disease management. However, little is known about the genomic features and pathogenic factors of A. pisi. In this study, we first report that A. pisi is one of the causal agents of ascochyta blight disease of pea in China. The genome of the representative isolate A. pisi HNA23 was sequenced using PacBio and Illumina sequencing technologies. The HNA23 genome assembly is almost 41.5 Mb in size and harbors 10,796 putative protein-encoding genes. We predicted 555 carbohydrate-active enzymes (CAZymes), 1,008 secreted proteins, 74 small secreted cysteine-rich proteins (SSCPs), and 26 secondary metabolite biosynthetic gene clusters (SMGCs). A comparison of A. pisi genome features with the features of 6 other available genomes of Ascochyta species showed that CAZymes, the secretome, and SMGCs of this genus are considerably conserved. Importantly, the transcriptomes of HNA23 during infection of peas at three stages were further analyzed. We found that 245 CAZymes and 29 SSCPs were upregulated at all three tested infection stages. SMGCs were also trigged, but most of them were induced at only one stage of infection. Together, our results provide important genomic information on Ascochyta spp. and offer insights into the pathogenesis of A. pisi. IMPORTANCE Ascochyta blight is a major disease of legumes worldwide. Ascochyta pisi and other Ascochyta species have been identified as pathogens of ascochyta blight. Here, we first report that A. pisi causes ascochyta blight of pea in China, and we report the high-quality, fully annotated genome of A. pisi. Comparative genome analysis was performed to elucidate the differences and similarities among 7 Ascochyta species. We predict abundant CAZymes (569 per species), secreted proteins (851 per species), and prolific secondary metabolite gene clusters (29 per species) in these species. We identified a set of genes that may be responsible for fungal virulence based on transcriptomes in planta, including CAZymes, SSCPs, and secondary metabolites. The findings from the comparative genome analysis highlight the genetic diversity and help in understanding the evolutionary relationship of Ascochyta species. In planta transcriptome analysis provides reliable information for further investigation of the mechanism of the interaction between Ascochyta spp. and legumes.


Assuntos
Ascomicetos , Fabaceae , Pisum sativum/microbiologia , Ascomicetos/genética , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia
18.
Arch Virol ; 168(1): 15, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593368

RESUMO

Phaeobotryon rhois is an important pathogenic fungus that causes dieback and canker disease of woody hosts. A novel mycovirus, tentatively named "Phaeobotryon rhois victorivirus 1" (PrVV1), was identified in P. rhois strain SX8-4. The PrVV1 has a double-stranded RNA (dsRNA) genome that is 5,224 base pairs long and contains two open reading frames (ORF1 and ORF2), which overlap at a AUGA sequence. ORF1 encodes a polypeptide of 786 amino acids (aa) that contains the conserved coat protein (CP) domain of victoriviruses, while ORF2, encodes a large polypeptide of 826 aa that contains the conserved RNA-dependent RNA polymerase (RdRp) domain of victoriviruses. Our analysis of genomic structure, homology, and phylogeny indicated that PrVV1 is a novel member of the genus Victorivirus in the family Totiviridae. This is the first report of the complete genome sequence of a victorivirus that infects P. rhois.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Totiviridae , Proteínas Virais/genética , Proteínas Virais/química , Ascomicetos/genética , Genômica , Genoma Viral , Filogenia , Fases de Leitura Aberta , RNA de Cadeia Dupla , RNA Viral/genética , RNA Viral/química , Micovírus/genética , Vírus de RNA/genética
19.
Mol Phylogenet Evol ; 180: 107680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572164

RESUMO

Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.


Assuntos
Ascomicetos , Basidiomycota , Líquens , Filogenia , Evolução Biológica , Ascomicetos/genética , Líquens/genética
20.
Int J Biol Macromol ; 226: 423-433, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36473526

RESUMO

Hypocrellins are fungal perylenequinones (PQs) from Shiraia fruiting bodies and potential photosensitizers for cancer photodynamic therapy. Shiraia fruiting bodies harbor diverse bacterial communities dominated by Pseudomonas. The present study was to characterize the exopolysaccharide (EPS) of P. fulva SB1 which acted as an elicitor to stimulate the PQ accumulation of the host Shiraia. A bacterial EPS named EPS-1 was purified from the culture broth of P. fulva SB1, which consisted of mannose (Man) and glucose (Glc) with an average molecular weight of 9.213 × 104 Da. EPS-1 had (1 â†’ 2)-linked α-mannopyranose (Manp) backbone and side chains of α-D-Manp-(1→ and α-D-Manp-(1 â†’ 6)-ß-D-Glcp-(1 â†’ 6)-α-D-Manp(1 â†’ group attached to the O-6 positions of (1 â†’ 2)-α-D-Manp. EPS-1 at 30 mg/L stimulated both intracellular and extracellular hypocrellin A (HA) by about 3-fold of the control group. The EPS-1 treatment up-regulated the expression of key genes for HA biosynthesis. The elicitation of HA biosynthesis by EPS-1 was strongly dependent on the induced reactive oxygen species (ROS) generation. The results may provide new insights on the role of bacterial EPS in bacterium-fungus interactions and effective elicitation strategy for hypocrellin production in mycelial cultures.


Assuntos
Ascomicetos , Perileno , Fotoquimioterapia , Humanos , Quinonas/farmacologia , Quinonas/metabolismo , Fenol/metabolismo , Perileno/farmacologia , Perileno/metabolismo , Ascomicetos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA